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ENGINEERING METHOD: INPUT-OUTPUT MODELS
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I Given input and output data, we want to identify:

I the most important structures inside the “black box”
I the values of the model parameters φ1, φ2, ...
I the time-varying state (voltage, velocity, etc)
I as accurately as we can despite uncertainty/noise

I Engineering methods are applicable to any input-output system:

I Mechanical: Swinging doors, engines, solar systems
I Electrical: Single resistors, circuits, computers
I Biological: Neurons, stimulus→response sensory systems



INPUT-OUTPUT MODELS OF THE AUDITORY BRAIN
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Goal: Use engineering methods to develop a complete functional
model of the black box spanning from the ear to the auditory cortex.

I We want models that map sounds to predictions about spiking
I Modeling every detail is too difficult
I Which physiology is most important/relevant?
I Better predictive models↔ better understanding

I Understand brain computation at an algorithmic level1

I Technological applications in cochlear implants, hearing aids
1Marr 1982



HOW ARE MODELS USEFUL TO PHYSIOLOGISTS?

1. Models give researchers flexibility in their stimuli.
I Tuning curves easily estimated with simple pure tones...
I ...but predicted responses extrapolated from simple stimuli

can poorly match responses to complex/natural sounds 2

I We infer tuning from neural responses to natural stimuli

2. Models can be used post-hoc to “data-mine” experimental data3

I Test multiple new hypotheses on old data
I Select the best model
I Model parameter values are contextual measurements

3. Models can hint at future experiments.
I If we notice clusters of model parameter values, can we

categorize neural types from functional properties?4

2Theunisson 2000, David 2009
3Mesgarani 2014
4Woolley, 2009



APPROACH OVERVIEW

I We use natural stimuli and awake animals

I We use physiology to motivate mathematical terms

I We test many, many alternative models on the same data set(s)

I Published and unpublished models
I Many combinations of model terms5

I We quantify how much each model term helps

5In the last 18 months, we have fit >540,000 models



WHAT SYSTEM IS THE DAVID LAB STUDYING?

I Today’s data is from the ferret
I Hearing range overlaps humans (20Hz-40kHz)6

I Network of well-defined auditory cortical areas7

I Can be trained for behavioral experiments 8

I ...but data from any animal can be used (mouse, marmoset)
I Today’s data is from primary auditory cortex (A1)
I ...but data from other sensory regions can be used
6Kelly, 1986
7Bizley 2005
8Fritz 2003; David 2012; Bizley 2013



HOW ARE WE ACQUIRING/ANALYZING DATA?
Ferret Vocalization Spectrogram
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We record single-unit activity:

1. Play a sound (Above: ferret vocalizations in spectrogram form)

2. Record extracellularly with tungsten micro-electrodes

3. Spikes are isolated, sorted as single units via PCA

4. Estimate model parameters from stimuli and spikes

5. Evaluate model performance using novel data with correlation
coefficient.



SPECTRO-TEMPORAL RECEPTIVE FIELD (STRF)
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The STRF9 can predict auditory neural responses to any stimulus:

1. Break a stimulus into many brief “tone pips”

2. Find the response to each tone pip with the STRF

3. The prediction is the sum of the responses to all pips
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9Aertsen 1982, deCharmes 1998, Theunissen 2001



MODELS AS MEASUREMENTS
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The STRF model as a “measurement” tells us:

I The frequencies to which the neuron is sensitive

I The latency between stimulus and neural response

I “Stationary temporal dynamics”: onset-sensitive or integrating

I Possible sensitivity to harmonicity, frequency sweeps, etc.



WHAT’S WRONG WITH THE STRF?

Sound Intensity
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The STRF makes obviously erronious “linear” predictions:
1. Doubling sound intensity always doubles the spike rate,

and neurons have no limit to how fast they can fire
2. Negative spike rates are possible
3. Neural responses cannot exhibit depression or facilitation
4. Non-additive interaction between frequency bands is not

modeled

We are interested in correcting these deficits.



IMPROVEMENT 1/4: VOLUME COMPRESSION
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Observations: Neuron spike rates often respond logarithmically to
increased sound intensity

Improvement: A base-n logarithmic compression term 10

f1(s) = log (s + φ1)

where s is the input.
I One parameter: φ1

I Improves predictions by 11-15%

10Gill & Theunisson 2006



IMPROVEMENT 2/4: BASE AND MAX THRESHOLDS
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Observations:
1. Very weak stimuli may not stimulate neurons

2. Very strong stimuli may saturate the neuron at a max firing rate

Improvement: Asymmetric logistic sigmoid spiking term11

f2(s) = φ2 +
φ3

1 + e−φ4(s−φ5))

I Five parameters: base rate, max rate, center inflection point, low
side curvature & high side curvature

I Improves predictions by additional 7%

11Nykamp & Ringach 2002.



IMPROVEMENT 3/4: NONLINEAR DYNAMICS
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Observations: Neurons may respond more weakly for a few
moments following strong stimuli

Improvement: Model time-varying “synaptic depression” 12

ḋ(t) = −φ6 · s(t) · d(t) +
1− d(t)

φ7

fDEP(s) = s(t) · d(t)
I A name is just a name – could be local feedback inhibition

I Two parameters: depression rate and recovery rate

I Improves predictions by additional 6-7%
12Markram 1998, David 2013



IMPROVEMENT 4/4: MULTIPLICATIVE INTERACTION
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Observations:
1. Neurons may respond weakly to stimulus s1 alone

2. Neurons may respond weakly to stimulus s2 alone

3. Neurons may respond strongly to both stimuli simultaneously

Improvement: Model multiplicative terms.13

I Linear Only:
p(t) = φ1s1(t) + φ2s2(t)

I Linear + Multiplicative:

p(t) = φ1s1(t) + φ2s2(t) + φ3s1(t)s2(t)

I Improves predictions by additional 4-5%
13Eggermont, 1993
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MEAN PREDICTION CORRELATION
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I Tested across a population of N=167 neurons
I Improvement of mean performance: 31%
I Best single unit prediction correlation to date: 0.9082



BIG PICTURE: PERFORMANCE

I Some neurons we can describe very well
I Others we cannot predict

I Some not strongly driven by sound stimuli...
...(maybe we’ll find models that explain them later?)

I Using same model for every neuron in cortex

I The more synapses from the cochlea, the harder to model
PPFA1

r_ceiling values, r_val < r_floor cut out, gt12, Batches #264, 265, 266, 100Hz, Compressor + NL, fit05
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I Good models for A1 seem applicable later
I Would earlier, more “peripheral” areas be easier?



BIG PICTURE: COMPLEXITY

“Are our more complex models doing better just because they have
more parameters and could describe any data set better?”

I We use fresh, novel data for measuring model
performance, so overfitting cannot occur

I We work hard to reduce the number of parameters using
matrix factorizations and re-parameterizations

I Fewer parameters are more comprehensible
I Models with fewer parameters require less data
I Particularly useful in behavioral studies



PARAMETERS/PERFORMANCE TRADEOFF
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CONCLUSIONS

I Predictive models can help you learn more from your
experimental data (even post-hoc)

I Classic models like the STRF have some shortcomings
I Incorporating biologically-inspired functional terms helps
I Most hypotheses out in the literature are sub-optimal
I We improved performance of the state of the art by 30%
I We have greatly reduced the number of parameters needed
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STRF REVISITED
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WHEN IS MODEL A IS BETTER THAN B?
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Prediction Correlation
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I There is considerable
natural variation in
neural function

I Model A wins for
some cells

I Model B wins for
other cells

I Does that mean A and
B describe different
cell types?

I Comparing
parameters from
different models is
hard

I We’d prefer the best
possible “common
yardstick”



QUESTIONS CONSIDERED

1. Which combinations of nonlinearites are best?
2. Does incorporating better models of the cochlea improve

prediction scores in A1?
3. Do models fit using alternative performance metrics differ

qualitatively?
4. Do assumptions of smoothness or sparsity help?
5. Which optimization algorithms are the best for neural

data?
6. How close are we to the upper perforamnce bound

possible?



MATH IN MATRIX FORM

Showing only 1 channel of 12-36 channels, showing only the
1st-order filterbank instead of a 4th-order filterbank, and
ignoring multiplicative interaction:
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EXTRA MATHEMATICAL COMMENTS

I Neuronal activity is spectrally complex but temporally simple

I Weighting and summing is a great method for approximating
any function and is neurobiologically plausible

I The best nonlinearities use the natural number e

I Regularization and smoothing almost never helps

I Our model can be efficiently computed as a system of nonlinear
differential equations

I Developing better spectral basis functions is very hard

I The performance metric and fitter are equally as important as
model structure.
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